Virtual private network
A virtual private network (VPN) extends a private network and the resources contained in the network across public networks like the Internet. It enables a host computer to send and receive data across shared or public networks as if it were a private network with all the functionality, security and management policies of the private network.[1] This is done by establishing a virtual point-to-point connection through the use of dedicated connections, encryption, or a combination of the two.
The VPN connection across the Internet is technically a wide area network (WAN) link between the sites but appears to the user as a private network link—hence the name "virtual private network".[2]
Types of VPN
Early data networks allowed VPN-style remote connectivity through dial-up modems or through leased line connections utilizing Frame Relay and Asynchronous Transfer Mode (ATM) virtual circuits provisioned through a network owned and operated by telecommunication carriers such as AT&T or Verizon. These networks are not considered true VPNs because they passively secure the data being transmitted by the creation of logical data streams.[3] They have given way to VPNs based on IP and IP/Multiprotocol Label Switching Networks (MPLS) based VPNs due to significant cost-reductions and increased bandwidth[4] provided by new technologies such as Digital Subscriber Line (DSL)[5] and fiber-optic networks.VPNs can be either remote-access (connecting an individual computer to a network) or site-to-site (connecting two networks together). In a corporate setting, remote-access VPNs allow employees to access their company's intranet from home or while traveling outside the office, and site-to-site VPNs allow employees in geographically separated offices to share one cohesive virtual network. A VPN can also be used to interconnect two similar networks over a dissimilar middle network; for example, two IPv6 networks over an IPv4 network.[6]
VPN systems can be classified by:
- the protocols used to tunnel the traffic
- the tunnel's termination point, i.e., customer edge or network-provider edge
- whether they offer site-to-site or remote-access connectivity
- the levels of security provided
- the OSI layer they present to the connecting network, such as Layer 2 circuits or Layer 3 network connectivity
Example use of a VPN Tunnel
The following steps[12] illustrate the principles of a VPN client-server interaction in simple terms.Assume a remote host with public IP address 1.2.3.4 wishes to connect to a server found inside a company network. The server has internal address 192.168.1.10 and is not reachable publicly. Before the client can reach this server, it needs to go through a VPN server / firewall device that has public IP address 5.6.7.8 and an internal address of 192.168.1.1. All data between the client and the server will need to be kept confidential, hence a secure VPN is used.
- The VPN client connects to a VPN server via an external network interface.
- The VPN server assigns an IP address to the VPN client from the VPN server's subnet. The client gets internal IP address 192.168.1.50, for example, and creates a virtual network interface through which it will send encrypted packets to the other tunnel endpoint (the device at the other end of the tunnel).[13] (This interface also gets the address 192.168.1.50.)
- When the VPN client wishes to communicate with the company server, it prepares a packet addressed to 192.168.1.10, encrypts it and encapsulates it in an outer VPN packet, say an IPSec packet. This packet is then sent to the VPN server at IP address 5.6.7.8 over the public Internet. The inner packet is encrypted so that even if someone intercepts the packet over the Internet, they cannot get any information from it. They can see that the remote host is communicating with a server/firewall, but none of the contents of the communication. The inner encrypted packet has source address 192.168.1.50 and destination address 192.168.1.10. The outer packet has source address 1.2.3.4 and destination address 5.6.7.8.
- When the packet reaches the VPN server from the Internet, the VPN server decapsulates the inner packet, decrypts it, finds the destination address to be 192.168.1.10, and forwards it to the intended server at 192.168.1.10.
- After some time, the VPN server receives a reply packet from 192.168.1.10, intended for 192.168.1.50. The VPN server consults its routing table, and sees this packet is intended for a remote host that must go through VPN.
- The VPN server encrypts this reply packet, encapsulates it in a VPN packet and sends it out over the Internet. The inner encrypted packet has source address 192.168.1.10 and destination address 192.168.1.50. The outer VPN packet has source address 5.6.7.8 and destination address 1.2.3.4.
- The remote host receives the packet. The VPN client unencapsulates the inner packet, decrypts it, and passes it to the appropriate software at upper layers.
VPNs in mobile environments
Main article: Mobile virtual private network
Mobile VPNs are used in a setting where an endpoint of the VPN is not fixed to a single IP address, but instead roams across various networks such as data networks from cellular carriers or between multiple Wi-Fi access points.[23] Mobile VPNs have been widely used in public safety, where they give law enforcement officers access to mission-critical applications, such as computer-assisted dispatch and criminal databases, while they travel between different subnets of a mobile network.[24] They are also used in field service management and by healthcare organizations,[25] among other industries.Increasingly, mobile VPNs are being adopted by mobile professionals and white-collar workers who need reliable connections.[25] They are used for roaming seamlessly across networks and in and out of wireless-coverage areas without losing application sessions or dropping the secure VPN session. A conventional VPN cannot survive such events because the network tunnel is disrupted, causing applications to disconnect, time out,[23] or fail, or even cause the computing device itself to crash.[25]
Instead of logically tying the endpoint of the network tunnel to the physical IP address, each tunnel is bound to a permanently associated IP address at the device. The mobile VPN software handles the necessary network authentication and maintains the network sessions in a manner transparent to the application and the user.[23] The Host Identity Protocol (HIP), under study by the Internet Engineering Task Force, is designed to support mobility of hosts by separating the role of IP addresses for host identification from their locator functionality in an IP network. With HIP a mobile host maintains its logical connections established via the host identity identifier while associating with different IP addresses when roaming between access networks.
মন্তব্যসমূহ
একটি মন্তব্য পোস্ট করুন